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1 Introduction

The thermal radiative transfer (TRT) problem is defined by the time-dependent multigroup radiative
transfer (RT) equations
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coupled with the material energy balance (MEB) equation
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Here Ig is the group specific radiation intensity; ηg(T ) = κg(T )Bg(T ) is the thermal emission term; Bg(T )
is the group Planck black-body distribution function; r is the spatial position; Ω is the unit vector in the
direction of particle motion; t is time; g is the group index; κg is the group opacity; T (r, t) is the material
temperature; ε(T ) is the material energy density.

The TRT model (1) and (2) is an essential part of different multiphysics phenomena which are affected
by energy redistribution due to photon interaction with matter. It represents well the main features
of general radiative hydrodynamic problems, such as high dimensionality, multiple scales, and strong
nonlinearity. The dimensionality of TRT problems is determined by the RT equation (1), the solution of
which in 3D depends on 7 independent variables. Conversely, the physical quantities that describe the
state of matter are functions of just 4 variables in 3D. The high dimensionality of RT equation motivates
development of various approximate models. There exist classical reduced-order models (ROMs), for
example, P1, diffusion, and P1/3 approximations that are widely used for simulations [1, 2]. The accuracy
of these models is well known to have certain limitations.

In this paper, we study a new approach for developing RT reduced-order models. To reduce dimension-
ality and formulate ROMs for multiphysics problems involving the RT equation, we apply the multilevel
nonlinear projective-iterative technique and a hierarchy of low-order quasidiffusion (LOQD) equations (aka
Variable Eddington Factor equations) [3, 4, 5, 6]. The LOQD equations are defined for the angular and
energy moments of the group specific intensity. The multilevel structure of these equations and the way
they are coupled enable us to apply them as a basis for developing a spectrum of ROMs with different
degrees of fidelity. It is also possible to formulate flexible ROMs that are capable of resolving accurately
physics at different scales of interest. Another component of the proposed ROMs is the proper orthog-
onal decomposition (POD) of the high-order solution and its moments necessary to generate a database
of various parameters of TRT ROMs [7, 8, 9]. Recently this approach was used to develop multigroup
ROM based on multilevel LOQD equations with the POD of the group QD (Eddington) factors [10]. This
paper presents a grey TRT ROM formulated by means of the grey LOQD equations and POD of group
QD factors and group energy densities. We apply this ROM in the case of 1D slab geometry.
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2 Multilevel System of QD Equations for TRT Problems

The general framework for the development of ROMs is the hierarchy of equations of the multilevel QD
(MLQD) method [11, 12, 13]. For TRT problems in 1D slab geometry, this multilevel system of equations
is given by

� the multigroup high-order RT equations
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� the multigroup LOQD equations
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where the group QD (Eddington) factor is given by
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/∫ 1
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� the effective grey LOQD equations coupled with the MEB equation
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+ cκ̄EE = cκ̄BaRT 4 , (6a)
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are different grey opacities,

f̄ =

∑G
g=1 fgEg∑G
g=1Eg

, ξ̄ =

∑G
g=1(κg − κ̄R)Fg∑G

g=1Eg
(10)

are the grey QD factor and the compensation term, respectively.

The system of the effective grey LOQD equations (6) is defined for the total energy density and
flux. The solution of these moment equations has the same dimensionality as the solution of multiphysics
equations that are represented by the MEB equation in the basic TRT problem under consideration. The
grey opacities and QD factor in Eqs. (6) and (7) are averaged with the solution of the multigroup LOQD
equations. The grey LOQD equations (6) can reproduce radiative transfer effects to an arbitrary degree of
accuracy and enable one to model multiphysics phenomena driven by interaction of thermal radiation and
matter. We apply them to develop a new class of ROMs for TRT problems.



3 Grey ROM for TRT Problems

The POD is a method of data analysis for obtaining approximate and low-dimensional representations of
high-dimensional phenomena. It was developed for creating models of physical phenomena based on a set
of experimental data or collection of numerical solutions [7, 8, 9]. This technique involves solving the given
problem, generating a database of results for a desired variable. For evolutionary problems, this database
is formed as a matrix A the columns of which are snapshots of the solution at available instants on time.
The POD uses a singular value decomposition (SVD) of the database matrix A that yields its compressed
representation. To further significantly reduce dimensionality of the problem a low-rank approximation of
A based on its SVD is applied. This leads to the low-order approximation of A that is optimal in the
2-norm.

We perform the POD of the discrete set of group energy densities Eg and group QD factors fg com-
puted on given grids in space and time. The POD is applied to each group data separately to obtain

approximations over space and time. We form G group-wise matrices Af
g ∈ Rm

f
g ,n and AE

g ∈ RmEg ,n, where

each matrix holds the set of fg and Eg, respectively. The columns of Af
g and AE

g are snapshots of the

solution at n instants of time, ordered chronologically. mf
g and mE

g are dimensions of discrete fg and Eg
in space. The SVD is applied to these matrices to cast them in the form

Aα
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gΣα
g

(
Vα
g

)T
, α = f,E , (11)

where Uα
g ∈ Rmαg ,kαg , Vα

g ∈ Rmαg ,kαg (for mα
g < n) are left and right matrices of singular vectors, Σα

g ∈ Rkαg ,kαg
is the matrix of singular values, and kαg = min(mα

g , n). The low-rank approximation of Aα
g is given by

Ãα
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g

(
Ṽα
g
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where Ũα
g ∈ Rmαg ,`αg , Ṽα

g ∈ Rmαg ,`αg , Σ̃α
g ∈ R`αg ,`αg . In this study, the reduced rank `αg corresponds to

σαi,g
σα1,g

≥ εσ for all i ≤ `αg , (13)

where σαi,g are singular values of Aα
g . There are other ways to choose the reduced rank. For example, the

fraction of energy comprised in the first p POD modes

γα,gp =

∑p
i=1

(
σαi,g
)2∑kα

i=1

(
σαi,g
)2 , (14)

can be taken into consideration. The denominator in Eq. (14) is the energy of all POD modes [8, 14].
We now formulate a new ROM that is defined by the grey LOQD equations (6) coupled with the MEB

equation (7). The coefficients of these grey equations are computed by means of approximate group energy

densities Ẽg and QD factors f̃g obtained by the POD of group solutions, namely, by Ãf
g and ÃE

g . The
database matrices Aα

g (α = f,E) are generated by solving the discretized equations of the MLQD method

(3), (4), (6), and (7) on a grid in phase space and time. To compute F̃g we apply the discretized group
first moment equation (4b) using approximate Ẽg and f̃g. Hereafter we refer to this model as the grey
ROM for TRT problems. Algorithm 1 shows the iteration scheme for solving TRT problem using this grey
ROM. We consider a set of ROMs with a low-rank approximation defined according to the criterion (13)
and specified parameter εσ.



Algorithm 1: The iteration algorithm for the grey ROM for TRT problems

if tn < tend then
n = n+ 1

compute f̃ng using Ãf
g with the specified rank `fg

compute Ẽng using ÃE
g with the specified rank `Eg

k = 0, T (0) = Tn−1

if ||T (k)−T (k−1)||>ε̃T ||T (k)||+ε̃∗T , ||E(k)−E(k−1)||>ε̃E ||E(k)||+ε̃∗E then
k = k + 1

update group opacities κg(T (k))

compute F̃ng using f̃ng , Ẽng and κg(T (k))

compute grey opacities κ̄(k)
E , κ̄(k)

R and factors f̄ (k) ξ̄(k) using Ẽng , F̃ng , f̃ng
solve the system of grey LOQD and MEB eqs. to compute T (k), E(k), F (k)

Tn ← T (k+1), En ← E(k+1), Fn ← F (k+1)

4 Numerical Results

To analyze the accuracy of reduced order models, we use the problem based on the Fleck-Cummings (F-C)
test [15]. Figure 1 presents its definition.

Figure 1: Definition of the test problem.

To form the databases Aα
g (α = f,E) we solve the test with the MLQD method [11, 13]. The multi-

group high-order RT equation (3) for the given direction µm is approximated with the method of step
characteristics. The multigroup LOQD equations (4) are discretized by means of a second-order finite
volume method. The spatial discretization of the grey LOQD equations (6) is algebraically consistent with
the discretized multigroup LOQD equations [13]. We use 17 frequency groups. The spatial mesh consists
of uniform 60 cells with length 0.1 cm. The double S4 Gauss-Legendre quadrature set is used. The time
interval of the problem is 0 ≤ t ≤ 6 ns. The reference numerical solution is computed with constant time
step ∆t = 2 × 10−2 ns and hence n=300. Convergence criteria for temperature and energy density are
defined as εT = εE = 10−12.

Figures 2 and 3 show the magnitude of singular values relative to the first one of Af
g and AE

g for all
groups, respectively. Note that there are 60 spatial cells. The vector of group QD factors and energy
densities are defined by their cell-average values and two values at the boundaries of the spatial domain.
Thus, the original database matrices Af

g ∈ R62,300 and AE
g ∈ R62,300 ∀g. The rank of both Af

g and AE
g

equals 62. Figures 4 and 5 present the relative error in the 2-norm of T and E computed with ∆t = 2×10−2



ns by means of (i) the grey ROM defined using criterion (13) with different εσ and (ii) the multigroup
P1 method. We notice that the grey ROM with low-rank approximation corresponding to εσ = 10−3 is
more accurate then the multigroup P1 method. These results show that the accuracy of the grey ROM
increases gradually as the rank of approximation increases over the most part of the time interval of the
problem. The performance of the grey ROM is different during the initial stage the problem (0 ≤ t ≤ 0.5
ns) when the solution changes very fast and requires higher rank of the POD. The detailed analysis of the
grey ROM solutions revealed that the observed effect in the solution at the beginning of the problem is
related partially to numerical effects in POD of the solution in the unperturbed part of the spatial domain
where there is only local radiation at the background temperature. This feature of the solution requires
further analysis and some modifications of the computational method.

Figure 2: Normalized singular values of Af
g .

Figure 3: Normalized singular values of AE
g .



Figure 4: Relative error in temperature in the 2-norm.

Figure 5: Relative error in total energy density in the 2-norm.

5 Conclusion

We proposed a novel grey reduced-order model for solving TRT problems. The developed grey ROM is
based on the grey LOQD equations coupled with the MEB equations and applies the POD of group QD
factors and group energy densities in space and time. It does not involve solution of either the high-order
RT or multigroup LOQD equations. This is a data-driven model. The RT solution of a given TRT problem
is used to generate the database that is approximated with the POD. This grey ROM sufficiently accurately
approximates the solution of the considered TRT problem. Further work will include analysis of accuracy
of the grey ROM when the time step is different from the one used to generate the database. We will study
application of the grey ROM as a basis for developing parametrized ROMs for TRT problems
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